Ligand recognition determinants of guanine riboswitches
نویسندگان
چکیده
Guanine riboswitches negatively modulate transcription upon guanine binding. The aptamer domain is organized around a three-way junction which forms the ligand binding site. Using currently available 89 guanine aptamer sequences, a consensus secondary structure is deduced and reveals differences from the previously identified aptamer consensus. Three positions are found to display different nucleotide requirements. Using a 2-aminopurine binding assay, we show that variations are allowed depending on the aptamer context. However, changes at position 48 markedly decrease ligand binding in a context-independent fashion. This is consistent with previous observations with the adenine riboswitch in which position 48 was proposed to interact with position 74, which normally base pairs with the ligand. The in vivo transcriptional control of endogenous Bacillus subtilis guanine riboswitches was studied using RT-qPCR assays. The ratio of elongated/terminated transcripts is decreased in presence of a high concentration of guanine but is dependent on the riboswitch analyzed. In general, the aptamer-2AP complex affinity correlates well with the in vivo regulation efficiency of the corresponding riboswitch. These studies suggest that core variations of guanine aptamers are used to produce a spectrum of ligand binding affinities which is used in vivo by host riboswitches to perform gene regulation.
منابع مشابه
Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch
Riboswitches are a novel class of genetic control elements that function through the direct interaction of small metabolite molecules with structured RNA elements. The ligand is bound with high specificity and affinity to its RNA target and induces conformational changes of the RNA's secondary and tertiary structure upon binding. To elucidate the molecular basis of the remarkable ligand selecti...
متن کاملStructural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs.
Metabolite-sensing mRNAs, or "riboswitches," specifically interact with small ligands and direct expression of the genes involved in their metabolism. Riboswitches contain sensing "aptamer" modules, capable of ligand-induced structural changes, and downstream regions, harboring expression-controlling elements. We report the crystal structures of the add A-riboswitch and xpt G-riboswitch aptamer...
متن کاملStructural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches.
The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway regulates biofilm formation, virulence, and other processes in many bacterial species and is critical for their survival. Two classes of c-di-GMP-binding riboswitches have been discovered that bind this second messenger with high affinity and regulate diverse downstream genes, underscoring the importance of RNA ...
متن کاملInterplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch
Riboswitches are highly structured elements in the 5'-untranslated regions (5'-UTRs) of messenger RNA that control gene expression by specifically binding to small metabolite molecules. They consist of an aptamer domain responsible for ligand binding and an expression platform. Ligand binding in the aptamer domain leads to conformational changes in the expression platform that result in transcr...
متن کاملGuanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine.
Several mRNA aptamers have been identified in Mesoplasma florum that have sequence and structural features resembling those of guanine and adenine riboswitches. Two features distinguish these RNAs from established purine-sensing riboswitches. All possess shortened hairpin-loop sequences expected to alter tertiary contacts known to be critical for aptamer folding. The RNAs also carry nucleotide ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007